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Feedback control of a subcritical oscillatory instability is investigated in the framework of a globally-
controlled complex Ginzburg-Landau equation that describes the nonlinear dynamics near the instability
threshold. The control is based on a feedback loop between the system linear growth rate and the maximum of
the amplitude of the emerging pattern. It is shown that such control can suppress the blow up and result in the
formation of spatially localized pulses similar to oscillons. In the one-dimensional case, depending on the
values of the linear and nonlinear dispersion coefficients, several types of the pulse dynamics are possible in
which the computational domain contains: �i� a single stationary pulse; �ii� several coexisting stationary pulses;
�iii� competing pulses that appear one after another at random locations so that at each moment of time there
is only one pulse in the domain; �iv� spatiotemporally chaotic system of short pulses; �v� spatially-
synchronized pulses. Similar dynamic behavior is found also in the two-dimensional case. The effect of the
feedback delay is also studied. It is shown that the increase of the delay leads to an oscillatory instability of the
pulses and the formation of pulses with oscillating amplitude.
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I. INTRODUCTION

Numerous physical, chemical, and biological systems far
from equilibrium exhibit oscillatory instabilities that are
characterized by the appearance of waves and other oscillat-
ing patterns �1�. If the instability is supercritical, its nonlinear
dynamics is described by a complex Ginzburg-Landau equa-
tion �CGLE� that exhibits a great plethora of spatiotemporal
patterns that was studied extensively over the years �2�. In
the case of a subcritical oscillatory instability, the system
dynamics cannot usually be described by an amplitude equa-
tion such as CGLE, since the absence of nonlinear saturation
at the cubic order drives the system out of the weakly non-
linear regime. Although for certain values of the dispersion
and Landau coefficients a subcritical CGLE still has bounded
solutions �3,4� �as well as CGLE with the pure imaginary
Landau coefficient �5��, in most of cases its solutions blowup
in a finite time which corresponds to the transition of the
system dynamics to a strongly nonlinear regime beyond the
applicability of CGLE. In many cases, however, such strong
growth of perturbations near a subcritical instability thresh-
old is undesirable. In this paper, we show that the blowup of
weakly nonlinear solutions in subcritical CGLE can be sup-
pressed by means of feedback control which allows one to
keep the system dynamics in a weakly nonlinear regime,
when the amplitude of perturbations remains small.

Feedback control of instabilities and nonlinear dynamics
in systems far from equilibrium has been attracting growing
attention. It has been shown that it can be applied to
Rayleigh-Benard convection �6–9�, Marangoni convection
�10–12�, contact line instability in thin liquid films �13�, ex-
citable media �14–17�, and other reaction-diffusion systems
�18�, catalytic reactions �19,20�, and crystal growth �21,22�.
The effect of feedback control on nonlinear dynamics of a
supercritical oscillatory instability described by a CGLE with
additional, global feedback control term with delay, was in-

vestigated in �23–25� in one- �1D� and two-dimensional
cases. It was shown that, by adjusting the feedback intensity
and the delay time, one can destroy the phase slips and spiral
waves, and produce breathing and stationary cellular struc-
tures. Similar equation with global delayed feedback control
was analyzed recently in relation to spatiotemporal control of
cardiac alternans �26�. In a recent work �27� a controlled,
one-dimensional CGLE with spatiotemporally delayed con-
trol term was considered; it was shown that delayed feedback
control can stabilize traveling waves for the parameters out-
side the Benjamin-Feir stability region. Similar conclusion
was made in �28� for feedback control of a 1D oscillatory
convection pattern described by a CGLE.

In the above examples feedback control of only supercriti-
cal oscillatory instabilities was investigated. A possibility to
control and suppress the blow up behavior caused by sub-
critical oscillatory instability, to the best of our knowledge,
has not been studied. In the present paper we report the re-
sults of our investigation of feedback control of systems
characterized by a subcritical oscillatory instability.

II. MODEL

Consider a system that exhibits a subcritical oscillatory
instability at a finite wave number characterized, near the
instability threshold, by a dispersion relation ��k�=�+ i�,
�=�R�R−Rc�−��k−kc�2+¯, �=�0+�1�k−kc�+�2�k−kc�2

+�R�R−Rc�+¯, where � is the growth rate of perturbations
with the wave number k, R is a bifurcation parameter, kc is
the wave number corresponding to the instability threshold,
Rc, and R−Rc=O��2�, k−kc=O���, ��1. Consider a feed-
back control of the bifurcation parameter that will put the
supercriticality in the following feedback loop with the per-
turbation complex amplitude, A
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R − Rc = �2�1 − P max�A�� , �1�

where the maximum is computed over the whole domain. In
experiment, such feedback control could be implemented by
adjusting, e.g., the temperature difference across the liquid
layer in Rayleigh-Benard or Marangoni convection system
�9�, by controlling the pulling speed in directional solidifica-
tion �22�, by tuning the external pressure and temperature in
catalytic systems �19,20�, by changing the illumination inten-
sity in light-sensitive reaction-diffusion systems �14–17�, etc.
Of course, measuring the perturbation amplitude in a physi-
cal experiment will require certain time, especially if the
pattern evolves in a large domain, so that, generally, one
should take into account the time delay between the action of
sensors and actuators in such an experiment and consider

R − Rc = �2�1 − P max�A�t − ���� , �2�

where � is the delay time. At the same time, in some cases
the typical time delay can be small in comparison with the
characteristic time of the pattern evolution, and the feedback
delay can be neglected or it will not lead to a qualitative
change of the system behavior. We first concentrate on the
case when the feedback delay can be neglected, and discuss
the effect of delay in the last section of the paper.

Thus, we consider the feedback control of a bifurcation
parameter �1�. In this case the nonlinear dynamics near the
instability threshold will be described by a CGLE with an
additional control term; after appropriate rescaling, the con-
trolled CGLE will have the following form:

At = A + �1 + i	�Axx + �1 + i
��A�2A − pA max�A� , �3�

where p is the rescaled control parameter, p� ��R+ i�R�P.
Note, however, that using the transformation arg�A�
→arg�A�+Im�p��0

t maxx�A�s��ds, one can eliminate Im�p�
from Eq. �3�. Thus, we shall further consider the control
parameter p to be real and positive.

III. TRAVELING WAVE SOLUTIONS

Equation �3� has two traveling wave �TW� solutions

A = R± exp�i�kx − �t�� ,

R± = p/2 ± �p2/4 − 1 + k2, �4�

� = 	k2 − 
R±
2 ,

for p2�1−k2, one TW solution, A=R+ exp�i�kx−�t��, for
�k�1, and no TW solutions for p�2�1−k2. However, all
TW solutions �4� are unstable. In order to demonstrate this,

consider A= �R±+ R̃�exp�i�kx−�t+ �̃�� and linearize Eq. �3�
with respect to perturbations R̃ and �̃. First consider spatially

homogeneous perturbations, �̃=0, R̃= R̄e�0t. From the linear-

ized equation for R̃ one obtains �0=�F�R±� /�R±, where
F�x�=x�x2− px+ �1−k2��. One can readily see that the TW
solution with R+ is always unstable, while the TW solution
with R− is stable with respect to spatially homogeneous per-
turbations for �k��1, p2�1−k2. In order to study the sta-

bility of the TW solutions with respect to spatially-periodic

perturbations, consider R̃=Re�R̂eiqx+�t�+ R̃0�t�, �̃

=Re��̂eiqx+�t�+ �̃0�t�, where the spatially-homogeneous parts

of the perturbations, R̃0�t� and �̃0�t�, must be added due to
the presence of the control term in Eq. �3� that results in a

nonlocal term p�max R̃�R± in the equation for R̃. However,
this term contributes only to the spatial average of the per-

turbation, �R̃	, and therefore, the evolution of R̃0�t� and �̃0�t�
is decoupled from the evolution of the spatially-periodic

parts of the perturbations characterized by the amplitudes R̂

and �̂. Thus, from the linearized equations one obtains the
following dispersion relation:

�2 + ��2�q2 − R±
2� + 4i	kq� + q2�1 + 	2��q2 − 4k2�

− 2R2q�q�1 + 	
� + 2ik�	 − 
�� = 0. �5�

For q→0, Eq. �5� has the root �=2R±
2 0. Therefore, all

traveling waves �4� are unstable with respect to long-wave
amplitude modulations.

IV. PULSE SOLUTIONS

Besides traveling wave solutions, the subcritical CGLE
with control �3� has the following pulse solutions:

Ap�x,t� = Rp�x�e−i�p�x,t�,
�6�

Rp�x� =
ap

cosh �px
, �p = �p ln cosh �px + �pt ,

where

ap = �pY/2��1 ± �1 − 4/�p2Y�� ,

Y =
3�9 + 8	2 + 	
 + �9�1 + 	
�2 + 8�	 − 
�2�

2�9 + 8	2 + 2	
 − 
2�
,

�p
2 = ap

2
3 + 	
 + 2	2

3�1 + 	2�
−

1

Y
� , �7�

�p =
	 − 


3 + 	
 + 2	2 − 3�1 + 	2�/Y
,

�p = �p
2�2�p + 	��p

2 − 1�� .

Solution �6� and �7�, is analogous to the well-known Nozaki-
Bekki solution of a supercritical CGLE �29�; see also �2,30�
for review. Similar pulse solutions were studied for a sub-
critical cubic CGLE in �3,4� and for a subcritical quintic
CGLE in �31,32�.

For Y 0, the two branches of the pulse amplitude ap

exist for p p*=2/�Y. In this case ap1/ p and the effective
�controlled� linear growth rate �supercriticality� �=1
− p maxx�A��0. Therefore, in this region of parameters the
pulse tails are stable and a single pulse can exist in a large
domain. For Y �0, only one branch of the pulse amplitude,
corresponding to the negative sign, exists for all p0. In this
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case, ap�1/ p and the effective supercriticality �=1
− p maxx�A�0; thus the tails of a pulse are unstable and a
single localized pulse cannot exist in a large domain. Note
that the sign of Y changes when its denominator passes
through zero; at this boundary ap→1/ p. Thus, depending on
the sign of Y, different dynamics is expected.

V. NUMERICAL SIMULATIONS

We have performed numerical simulations of the con-
trolled CGLE �3� by means of a pseudospectral method with
periodic boundary conditions, starting from small-amplitude
random initial data with zero average. “Phase diagram� in
�	 ,
� plane, showing different types of nonlinear dynamics
exhibited by the solutions of Eq. �3� in �	 ,
� is presented in
Fig. 1. Solid line corresponds to the values of 	 and 
 for
which the denominator of Y is zero. Note that the system is
invariant with respect to the transformation 	→−	, 
→
−
, arg A→−arg A; therefore, we consider only 
0.

For the parameters 	 and 
 corresponding Y 0, we have
observed the formation of a single localized pulse described
by Eqs. �6� and �7� with the negative sign in �7� �stable
branch�. This pulse is shown in Fig. 2. The upper figure
presents the space-time diagram of Re�A� starting from
small-amplitude random data and shows the formation of a
stable pulse in which time oscillations of real and imaginary
part of A are spatially localized. The two lower figures show
Re�A�, Im�A�, �A� as well as the local wave number, �� /�x,
where �=arg�A�, for an established pulse at a particular mo-
ment of time. In this pulse the amplitude and the phase are
stationary while the real and imaginary parts of A are oscil-

lating. One can see that this pulse is a source of two rapidly
decaying waves propagating away from the pulse, to the left
and to the right; due to periodic boundary conditions, these
two waves meet at some point in the domain and form a
domain boundary �phase defect� corresponding to the abrupt
jump of the wave number. Note that max�A�=0.20161/ p
=0.2 for the parameter values corresponding to Fig. 2, so that
the effective linear growth rate �=1− p max�A��0; this
makes the pulse tails stable and allows it to exist.

For the parameters 	 and 
 corresponding to Y �0, when
a single localized pulse is unstable, we have observed differ-
ent types of behavior. For 	�0 and �	 ,
� close to the left
boundary where Y changes the sign we have observed the
formation of competing pulses �region “cp” in Fig. 1�, ex-
ample of which is shown in Fig. 3. In this regime, a single
pulse is born randomly in space and time, with the initial
amplitude large enough so that the effective linear growth
rate �=1− p max�A��0 and all perturbations of the pulse tail
get damped by the global control. Then the pulse amplitude
decreases and gets stabilized at such value that 0��=1
− p max�A��1 �for pulses shown in Fig. 3 �=0.06�. In this
case, the tails of a single pulse are unstable but the instability
growth rate is small so that the single pulse exists for a
considerable time until the instability develops. The pertur-
bations of the tails are growing and ultimately lead to the
birth of another pulse, at a different location. The birth of
another pulse, with large amplitude, damps all other pertur-
bations in the domain by the global control, and the process
repeats itself so that now the new pulse “rules” for some
time, until the next “revolution” occurs and it gets “over-
thrown” by a new “ruler.”

For 
 fixed and 	 increasing, each single pulse in the
competing pulses regime lasts shorter, and a few pulses can
appear simultaneously. One observes a chaotic spatiotempo-
ral dynamics of short pulses. This regime of short chaotic
pulses is presented in Fig. 4�a� that shows spatiotemporal
diagram of �A�. It is interesting that in this case each pulse is

FIG. 1. “Phase diagram” of different nonlinear dynamic regimes
described by Eq. �3�. Y 0: single pulse. Y �0: “cp”—competing
pulses, “scp”—short chaotic pulses, “sp”—synchronized pulses,
“mp”—multiple pulses with stationary amplitude. The diagram is
plotted for p=5.0 but it depends on p very weekly.

FIG. 2. �Color online� Numerical solution of Eq. �3� for 	=
−0.5, 
=2.0, p=5.0 corresponding to a single localized pulse de-
scribed by the solution �6� and �7�. Upper figure: spatiotemporal
diagram of Re�A� showing the pulse formation. Lower figures:
Re�A�, Im�A�, �A�, and the local wave number, �� /�x ��=arg�A��,
for an established pulse at a particular moment of time.
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characterized by a number of phase defects, domain bound-
aries between wave patterns characterized by different wave
vectors, that manifest themselves as dark curves between the
pulses. The regime of short chaotic pulses shown in Fig. 4�a�
is observed for the parameter region “scp” in the phase dia-
gram shown in Fig. 1. With the increase of the control pa-
rameter p the pulses become wider so that less pulses can
occupy a given periodic domain. Note that somewhat similar
short chaotic pulses were observed in the dynamics de-
scribed by a subcritical cubic CGLE without control for cer-
tain values of the dispersion coefficients 	 and 
 �3,4�, as
well as in the dynamics of a CGLE with pure imaginary
Landau coefficient �nonlinear dispersion only, without non-
linear saturation, �5��.

With further increase of 	 at fixed 
, the short pulses start
to synchronize so that the next new pulse appears more often
at the same spatial location as its predecessor. A given pulse
also lasts longer, and several pulses appearing at the same
location form in a sense a long pulse with flickering ampli-
tude. Spatiotemporal diagram showing such synchronized
pulses is shown in Fig. 4�b�. This regime is observed in the
parameter region “sp” shown in Fig. 1.

Note that, as one can see in Fig. 4, when two pulses are
born close enough to each other they interact and move to-
wards each other, ultimately merging in a single pulse. It
would be interesting to investigate the interaction of pulses
in more detail, however, this is beyond the scope of the
present paper. We shall study the interaction of pulses in
future work.

The difference between the two regimes—
spatiotemporally chaotic pulses and spatially synchronized
pulses—can be also seen in Fig. 5. Figures 5�a� and 5�b�
show the amplitude ��A�	 averaged over a long time for the
regime of chaotic pulses �Fig. 5�a�� and synchronized pulses
�Fig. 5�b��. One can see that while the pulse “spatial iden-
tity” is largely kept in the case of synchronized pulses, it is
smeared out in time in the case of chaotic pulses. This can be
clearly seen in Fig. 5�c� that presents the Fourier power spec-
tra of ��A�	 shown in Figs. 5�a� and 5�b� �thin line corre-
sponds to Fig. 5�a� and thick line corresponds to Fig. 5�b��.
One can see that in the case of synchronized pulses the spec-
trum has a clear maximum corresponding to an average spa-
tial period of the pulse spatial locations. The tails of the
spectra for large wave numbers in both cases �a� and �b�
obey power laws with the exponents −2.8 and −4.3, respec-
tively.

For 	 close to the right boundary of the region Y �0, one
observes the formation of multiple, coexisting pulses with
stationary amplitude. The formation of such multiple pulses

FIG. 3. Spatiotemporal diagram of a numerical solution of Eq.
�3� for 	=−0.5, 
=3.0, p=5.0, showing competing pulses: �a�
Re�A�; �b� �A�.

FIG. 4. Spatiotemporal diagram of numerical solutions of Eq.
�3� showing �a� �A� corresponding to the regime of spatiotemporally
chaotic pulses, for 	=−2.0, 
=15.0, p=5.0; �b� synchronized
pulses, for 	=1.0, 
=10.0, p=5.0.

FIG. 5. �Color online� Time-averaged amplitude ��A�	 corre-
sponding to the regime of chaotic pulses �a� and spatially synchro-
nized pulses �b� shown in Figs. 4�a� and 4�b�, respectively; �c�
Fourier power spectra of ��A�	 shown in �a� �thin line� and �b� �thick
line�.
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is shown in Fig. 6. With the decrease of the control param-
eter, each pulse becomes narrower, oscillates faster, the dis-
tances between the pulses decrease, and more pulses can
occupy a given domain. The oscillation frequency of all
pulses is the same and the phases are synchronized. The
distances between the adjacent pulses are not the same but it
cannot be too large due to instability of the pulse tail. Note
that similar multipulse solutions were observed in the dy-
namics of a subcritical cubic CGLE without control in �3,4�,
for certain values of the parameters 	 and 
.

VI. TWO-DIMENSIONAL CASE

It is interesting that the two types of nonlinear dynamics
described above, a single localized pulse and competing
pulses, are also observed in a two-dimensional system char-
acterized by a long wave, subcritical oscillatory instability
with the dispersion relation for the linear growth rate ��k�
=�+ i�, �=�R�R−Rc�−�k2+¯, �=�0+�2k2+�R�R−Rc�
+¯, �where k= �k� is the absolute value of the perturbation
wave vector�, under the same global feedback control �1�.
The nonlinear dynamics of such a system is described by the
following controlled two-dimensional CGLE:

At = A + �1 + i	��2A + �1 + i
��A�2A − pA max�A� . �8�

We have performed numerical simulations of Eq. �8� by
means of a pseudospectral method starting from small-
amplitude random noise. For some values of 	 and 
 we
have observed the formation of a single localized pulse with
stable tails ��=1− p max�A��0�; example of such pulse is
shown in Fig. 7�a�.

For some other parameter values we have observed the
formation of competing pulses with �0 shown in Fig.
7�b�. As in one-dimensional case, here a localized pulse ap-
pears with a large amplitude and damps other pulses due to
the feedback control. However, since the established pulse
amplitude is such that the effective linear growth rate of a
trivial state is positive, the pulse tails are unstable; this leads
to the growth of small perturbations leading to the formation
of new pulses, and the process repeats itself in a chaotic
manner.

VII. EFFECT OF DELAY

In this section we study the effect of possible feedback
delay on the dynamics of a system exhibiting a subcritical

oscillatory instability. Thus we consider the feedback control
with delay � described by Eq. �2� so that the amplitude equa-
tion describing the system nonlinear dynamics under this
feedback control will be

At = A + �1 + i	�Axx + �1 + i
��A�2A − pA max�A�t − ��� .
�9�

Obviously, the traveling wave solution �4� of Eq. �3� is
also a solution of Eq. �9�, and as before, it is always unstable.
The localized pulse solution �6� and �7� is also a solution of
Eq. �9� due to its stationary amplitude. However, the pres-
ence of delay can cause instability of a single localized pulse
even in the region Y 0 �see Fig. 1� where the effective
supercriticality is negative, �=1− p max�A��0. Also, the
presence of delay can change the stability and behavior of
other dynamic regimes described by the controlled CGLE
and discussed above.

We have performed numerical simulations of Eq. �9� and
investigated the effect of delay on the dynamic behavior. We
have found that a single localized pulse described by �6� and
�7� becomes oscillatory unstable when the feedback delay
exceeds a critical value. The pulse amplitude, �A�, starts os-
cillating, with the oscillation amplitude increasing with the
increase of the delay. The formation of such pulse, charac-
terized by the oscillating amplitude, is shown in Fig. 8 that
displays space-time diagrams of �A� and Re�A�. One can see
that the frequency of the pulse amplitude oscillations differs
from the pulse own frequency of oscillations of Re�A� and
Im�A�. Thus, in the presence of the feedback delay above the
critical value, Re�A� and Im�A� exhibit two-frequency oscil-
lations. Also, the feedback-delay-induced oscillations are
synchronized in space due to the global nature of control.
Figure 9�a� presents the bifurcation diagram that shows how
the amplitude of the delay-induced oscillations increases
with the increase of the delay �the amplitude oscillations are

FIG. 6. Spatiotemporal diagram of a numerical solution of Eq.
�3� for Re�A�, 	=0.4, 
=4.0, p=10 showing the formation of co-
existing pulses with stationary amplitude.

FIG. 7. Numerical solutions of Eq. �8� �absolute value �A�� in the
form of �a� a spatially-localized pulse for 	=5.0, 
=5.0, p=3.0; �b�
competing, spatially-localized pulses for 	=3.0, 
=20.0, p=3.0
shown at two different moments of time.

FEEDBACK CONTROL OF SUBCRITICAL OSCILLATORY¼ PHYSICAL REVIEW E 73, 046212 �2006�

046212-5



measured here in the center of the pulse�. The critical value
of the delay at which the stationary pulse becomes oscilla-
tory unstable increases with the increase of the control pa-
rameter p; this is shown in Fig. 9�b�. Also, we have found
that the delay critical value weakly depends on the param-
eters 	 and 
.

The effect of the feedback delay on the regime of com-
peting pulses is similar to its effect on a single localized
pulse. We have found that when the delay exceeds a critical
value the amplitude of the competing pulses starts oscillating
in the same manner as that of a single localized pulse dis-
cussed above. Again, these feedback-induced oscillations are
synchronized in space. This regime of competing pulses with
oscillating amplitude is shown in Fig. 10. The critical delay
at which the amplitude of the competing pulses undergoes
the oscillatory instability is very close to that corresponding
to a single localized pulse.

The effect of the feedback delay on other dynamic re-
gimes described in the previous sections is also similar. After
the delay increases above a critical value one observes glo-

bal, spatially-synchronized oscillations of the amplitude of
the pulses. Figure 11 shows feedback-delay-induced oscilla-
tions of the amplitudes in the regime of spatially-
synchronized pulses �Fig. 11�a�� and in the regime of mul-
tiple pulses �Fig. 11�b�; the formation of the multiple pulses
with the oscillating amplitude is shown�.

VIII. CONCLUSIONS

We have investigated the nonlinear dynamics of systems
exhibiting a subcritical, short-wave oscillatory instability, un-
der the action of a global feedback control based on the
modulation of the bifurcation parameter as described by Eq.

FIG. 8. Space-time diagrams of a numerical solution of Eq. �9�
for p=5.0, 	=−0.5, 
=2.0, and delay �=1.5 showing the formation
of a localized pulse with an oscillating amplitude: �a� �A�; �b� Re�A�.

FIG. 9. �a� Maximum and minimum of the oscillating amplitude
of a single localized pulse in its center as a function of the feedback
delay � for p=5.0, 	=−0.5, 
=2.0; dashed line shows the constant
amplitude of a localized pulse without delay. �b� Critical value of
the feedback delay, �cr, as function of the control parameter p for
the same values of 	 and 
.

FIG. 10. Competing pulses with oscillating amplitude—
numerical solution of Eq. �9� with 	=−0.5, 
=3.0, p=5.0, �=1.6.
�a� Spatiotemporal diagram of Re�A�. �b� Oscillations of Re�A� in a
particular point in space �x=271�.

FIG. 11. Spatiotemporal diagrams of �A� corresponding to a nu-
merical solution of Eq. �9� for �a� 	=1.0, 
=10.0, p=5.0, �=1.5,
and �b� 	=2.0, 
=9.0, p=7.0, �=1.6.
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�1� or �2�. The system nonlinear dynamics is described by the
controlled CGLE �3� or �9�, respectively. We have shown
that this feedback control can prevent the blow up and sus-
tain the system dynamics in the weakly nonlinear regime. We
considered two cases: when the feedback delay can be ne-
glected �Eq. �3�� and when it is significant �Eq. �9��. For the
case without delay we have shown that traveling wave solu-
tions of Eq. �3� are unstable but the system can exhibit
spatially-localized solutions in the form of pulses. We have
found analytical solution of Eq. �3� in the form of a localized
single pulse with stationary amplitude described by �6� and
�7� that exists for certain values of the dispersion coefficients
	 and 
. We have also found other dynamic regimes de-
scribed by the controlled CGLE �3�: competing pulses, cha-
otic pulses, synchronized pulses, as well as multiple pulses
with stationary amplitude. The phase diagram of different
regimes is shown in Fig. 1. We have also numerically studied
the two-dimensional analog of Eqs. �3�–�8�, that describes
the weakly nonlinear dynamics of a system that exhibits
long-wave subcritical oscillatory instability. We have found
that solutions of Eq. �8� can exhibit similar nonlinear dynam-
ics in the form of spatially-localized pulses with a constant
amplitude, like oscillons, as well as competing spatially-
localized pulses that appear at different locations, suppress
all perturbations around them, but after some time get them-
selves replaced by new pulses appearing at a different loca-
tion.

We have also investigated the effect of delay of the feed-
back control on the nonlinear dynamics of a system exhibit-
ing a subcritical oscillatory instability and described by Eq.

�9�. We have found that if the delay is small, the system
dynamics is the same as that described by Eq. �3� without
delay. If the delay exceeds a critical value, that depends on
the control parameter p and weakly depends on the disper-
sion coefficients 	 and 
, the amplitude of the pulses in all
regimes described by the phase diagram shown in Fig. 1
exhibits oscillations whose amplitude increases with the in-
crease of the delay. When the delay time exceeds the value
equal to the blow up time of a system without control, that
depends on the amplitude of the initial conditions, the system
that starts its evolution from small-amplitude random noise
blows up.

The obtained results demonstrate that the global feedback
control of a system exhibiting a subcritical oscillatory insta-
bility, based on the feedback loop between the bifurcation
parameter and the maximal perturbation amplitude and de-
scribed by Eq. �1�, is capable of stabilizing the system in the
weakly nonlinear regime and can lead to an interesting non-
linear dynamics. Especially interesting, from experimental
point of view, seems to be the possibility of the formation of
spatially-localized single pulses �oscillons�. These pulses, by
choosing appropriate initial conditions, can be forced to form
at a given location in space which opens an interesting op-
portunity to control pattern formation in systems exhibiting
oscillatory dynamics, especially biological and chemical
ones.
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